News

Artificial neurons point to revolutionary treatment of heart disease

Artificial neurons point to revolutionary treatment of heart disease
Digital Single Market

The research team of the CResPace project has recently announced a futuristic and ground-breaking achievement in the field of bio-electronics. For the first time, brain cells have been accurately reproduced in a silicon chip, opening new avenues for the treatment of several severe conditions, such as heart failures and degenerative diseases, like Alzheimer.

Futuristic representation of a brain made of microchips

A historic result in the field of bio-electronic medicine has been achieved by CResPace, a Future and Emerging Technologies (FET) Proactive project, now part of the Enhanced European Innovation Council (EIC) pilot. A team of the University of Bath (UK), has coordinated a multidisciplinary consortium of six universities from UK, Switzerland, Austria, The Netherlands and Czech Republic, with the presence of two industrial partners.

recent publication on Nature Communications has unveiled the massive breakthrough: for the first time the electrical properties of neurons have been successfully reproduced in a bionic silicon chip that can mimic the behaviour of biological neurons. This responsive microchip could be implanted in patients suffering conditions in which neurons are not working properly, such as heart failures or degenerative diseases.

Alain Nogaret, from the University of Bath, has commented enthusiastically the achievement:

Until now neurons have been like black boxes, but we have managed to open the black box and peer inside. Our work is paradigm changing because it provides a robust method to reproduce the electrical properties of real neurons in minute detail. 

The discover is particularly disruptive because the researchers have managed to model with high certainty the parameters that control the hugely complex and unpredictable behaviour of neurons in their non-linear responses to electrical stimuli. A condition like heart failure, for instance, is the result of a malfunctioning communication between the neurons in the brain and the nervous system feedback of the heart, which does not receive the right signals, and thus starts pumping incorrectly.

Designing a silicon-based solution has been a huge challenge, not only for the complexity of the neurons’ behaviour, but also for the hurdles of developing a micro-chip that requires only a little amount of power. This latter obstacle has been overtaken by opting for an analogue device, which only consumes one-billionth the power of a digital microprocessor.

The result has quickly received large media exposure in the first days after the publication of the article, with 477 pieces of coverage across radio, online and print. UK outlets such as BBC NewsFinancial TimesThe TimesThe GuardianTelegraphMail OnlineIndependent and Express have reported the story, as well as many other national papers worldwide (in SpanishGermanPortugueseItalianJapaneseChineseDutchRussianHungarian and French)  and specialist science outlets including The EngineerIFL Science & MIT Technology Review

The achievement of CResPace is the evidence of what the support to fundamental research can generate, both for the competitiveness of Europe and for all European Citizens. As put by Alain Nogaret: “The commitment of the FET program to support ambitious visionary research over the long term has been critical to developing the fundamental science and inter-disciplinary cross-fertilisation that are now putting European research at the forefront in providing much needed therapies for chronic disease”.


Article Source: https://ec.europa.eu/digital-single-market/en/news/artificial-neurons-point-revolutionary-treatment-heart-disease

NEWS​

Related News

Cost Effectiveness of Cervical Cancer Screening in Kenya

18 Apr 2024
Africa Health Business conducted a study to evaluate the cost- effectiveness of various cervical cancer detection methods. The study delved into the f...

Insights from the 4P-CAN Project Event at the European Parliament

18 Apr 2024
Discover latest cancer prevention insights at the European Parliament. Explore Horizon Europe Mission impact, Beating Cancer Plan, and collaborative s...

Transforming Antimicrobial Resistance: The Role of Digital Integration in AMR EDUCare

17 Apr 2024
As a leading organisation in the digital health space, ECHAlliance supports this project as a beneficiary, contributing to various project work packag...

Spain – Basque Health Ecosystem is ECHAlliance Ecosystem of the Month – April

17 Apr 2024
This month we are featuring our Spain - Basque Health Ecosystem as our Ecosystem of the Month.

The Miguel Delibes Cultural Center has been the epicenter of the Sectoral Meeting on Care and Innovation that commemorates the 10th Anniversary of the SIVI Cluster

16 Apr 2024
This conference, organized by the SIVI Cluster, was presented as a space for reflection, exchange and recognition of the advances and outstanding cont...

CRANE: pre-commercial procurement project. FundeSalud participate in the co-creation sessions of the CRANE Project in Copenhagen

16 Apr 2024
Three European companies are designing a prototype of a possible technological solution for patients with chronic diseases (Diabetes, Cardiovascular D...

Become a member

Join ECHAlliance to amplify your organisation’s message, grow your networks, connect with innovators and collaborate globally.
 
First name *
Last Name *
Email Address *
Country *
Position *
First name *
Last Name *
Email Address *
Country *
Position *